پایان نامه کشاورزی : بررسی خصوصیات فیزیکوشیمیایی و پایداری اکسای
دانشگاه آزاد اسلامی
واحد دامغان
دانشکده کشاورزی
پایان نامه جهت دریافت درجه کارشناسی ارشد در رشته مهندسی کشاورزی (M.S.c)
گرایش علوم و صنایع غذایی
عنوان
بررسی خصوصیات فیزیکوشیمیایی و پایداری اکسایشی روغن خرفه
استاد راهنما
دکتر راضیه نیازمند
استاد مشاور
دکتر مصطفی شهیدی نوقابی
تکه هایی از متن به عنوان نمونه :
فهرست مطالب | ||
عنوان | صفحه | |
چکیده | 1 | |
فصل اول- مقدمه | ||
مقدمه | 3 | |
فصل دوم- بررسی منابع | ||
2-1. خرفه | 6 | |
2-1-1. گیاهشناسی | 6 | |
2-1-2. ساختار شیمیایی خرفه | 7 | |
2-1-3. ویژگیهای درمانی خرفه | 9 | |
2-2. اکسایش لیپیدها | 10 | |
2-2-1. اکسایش نوری | 10 | |
2-2-2. اکسایش آنزیمی | 11 | |
2-2-3. اکسایش اسیدهای چرب به وسیله آنزیم لیپوکسیژناز | 11 | |
2-2-4. اکسایش خود به خودی | 11 | |
2-3. روشهای اندازه گیری اکسایش چربیها | 12 | |
2-3-1. اندازه گیری فراوردههای اولیه اکسایش | 13 | |
2-3-1-1. عدد پراکسید (PV) | 13 | |
2-3-1-2. روش تیتراسیون یدومتری | 13 | |
2-3-1-3. کمپلکس یون آهن ? | 13 | |
2-3-1-4. اسپکتروسکوپی مادون قرمز تغییر شکل فوریر (FTIR) | 14 | |
2-3-1-5. دیانها و تریانهای کنژوگه | 14 | |
2-3-2. اندازه گیری فراوردههای ثانویه اکسایش | 15 | |
2-3-2-1. عدد اسید تیوباربیتوریک (TBA) | 15 | |
2-3-2-2. عدد پارا آنیسیدین (AV) | 15 | |
2-3-2-3. عدد توتوکس یا عدد اکسایش | 16 | |
2-3-2-4. عدد کربونیل (CV) | 16 | |
2-4. آنتیاکسیدانهای غذایی | 17 | |
2-4-1. آنتیاکسیدانهای سنتزی | 17 | |
2-4-1-1. بوتیلید هیدروکسی آنیزول (BHA) | 18 | |
2-4-1-2. بوتیلید هیدروکسی تولوئن (BHT) | 18 | |
2-4-1-3. ترشیو بوتیل هیدروکینون (TBHQ) | 19 | |
2-4-1-4. گالاتها و اسید گالیک | 20 | |
2-4-2. آنتیاکسیدانهای طبیعی | 20 | |
2-4-2-1. توکوفرول | 22 | |
2-4-2-2. کاروتن | 23 | |
2-4-2-3. اسیدهای فنلی | 24 | |
2-4-2-4. فلاونوئیدها | 25 | |
2-4-2-5. ترپنوئیدها | 26 | |
2-4-2-6. اسید آسکوربیک | 27 | |
2-4-2-7. سزامول | 27 | |
2-4-2-8. گوسیپول | 28 | |
2-4-2-9. فیتاتها | 28 | |
2-4-3. مکانیسم عمل آنتیاکسیدانها | 28 | |
2-4-4. اندازه گیری قدرت آنتیاکسیدانی | 29 | |
2-4-4-1. اندازه گیری مقادیر کل ترکیبات فنلی | 29 | |
2-4-4-2. روش مهار رادیکال آزاد DPPH | 29 | |
2-4-4-3. ظرفیت آنتیاکسیدانی معادل ترولکس (TEAC) | 30 | |
2-4-4-4. ظرفیت جذب رادیکال اکسیژن (ORAC) | 30 | |
2-4-4-5. قدرت آنتیاکسیدانی احیاء آهن III | 30 | |
2-4-4-6. بیرنگ شدن بتا کاروتن | 31 | |
2-4-4-7. روش نگهداری در گرمخانه (آون) | 31 | |
2-5. استخراج عصارههای گیاهی | 31 | |
2-6. سینتیک واکنشهای اکسایشی | 32 | |
فصل سوم- مواد و روشها | ||
3-1. مواد اولیه | 35 | |
3-2. استخراج روغن | 35 | |
3-3. استخراج عصاره | 35 | |
3-4. آزمونها | 36 | |
3-4-1. ساختار اسید چرب | 36 | |
3-4-2. عدد یدی | 36 | |
3-4-3. عدد صابونی | 36 | |
3-4-3-1. تهیه پتاس الکی | 36 | |
3-4-4. ترکیبات استرولی | 37 | |
3-4-4-1. اندازه گیری نمونه | 37 | |
3-4-4-2. آماده سازی ستون اکسید آلومینیوم | 37 | |
3-4-4-3. استخراج مواد غیرقابل صابونی | 37 | |
3-4-4-4. کروماتوگرافی لایه نازک | 37 | |
3-4-4-5. جداسازی استرول | 38 | |
3-4-4-6. آمادهسازی استرول تری متیل سیلیل اتر | 38 | |
3-4-4-7. شناسایی استرولها | 38 | |
3-4-4-8. ترکیب استرول | 38 | |
3-4-4-9. تعیین میزان استرول | 39 | |
3-4-5. ترکیبات توکوفرولی | 39 | |
3-4-5-1. آمادهسازی محلولهای کالیبراسیون ذخیره | 39 | |
3-4-5-2. آمادهسازی محلول استاندارد | 39 | |
3-4-5-3. آمادهسازی محلول آزمون | 40 | |
3-4-6. ترکیبات مومی | 40 | |
3-4-7. وزن مخصوص | 41 | |
3-4-8. گرانروی دینامیکی | 41 | |
3-4-9. ضریب شکست | 41 | |
3-4-10. عدد پراکسید | 41 | |
3-4-10-1. ترسیم منحنی کالیبراسیون | 41 | |
3-4-10-2. تهیه محلول استاندارد آهن ? | 42 | |
3-4-10-3. تهیه محلول تیوسیونات آمونیوم | 42 | |
3-4-10-4. تهیه محلول آهن ? | 43 | |
3-4-10-5. اندازه گیری عدد پراکسید نمونه روغن | 43 | |
3-4-11. عدد اسیدی | 43 | |
3-4-12. مقدار کل ترکیبات قطبی (TPC) | 44 | |
3-4-13. شاخص پایداری اکسایشی (OSI) | 44 | |
3-4-14. ترکیبات فنلی | 45 | |
3-4-14-1. ترسیم منحنی کالیبراسیون | 45 | |
3-4-14-2. اندازه گیری ترکیبات فنلی عصاره | 45 | |
3-4-15. آزمون DPPH | 46 | |
3-4-15-1. ترسیم منحنی کالیبراسیون BHT | 46 | |
3-4-15-2. تعیین فعالیت آنتی رادیکالی عصاره | 46 | |
3-4-16. عدد اسید تیوباربیتوریک | 47 | |
3-4-17. عدد صابونی ناشونده | 47 | |
3-4-18. رنگ | 49 | |
3-4-19. آزمون گرمخانه گذاری | 49 | |
3-6. تجزیه و تحلیل آماری | 50 | |
فصل چهارم- نتایج و بحث | ||
4-1. درصد استخراج روغن از بذر خرفه | 52 | |
4-2. ویژگیهای فیزیکوشیمیایی روغن بذر خرفه | 52 | |
4-2-1. ساختار اسید چرب | 52 | |
4-2-2. وزن مخصوص | 56 | |
4-2-3. شاخص رنگ | 57 | |
4-2-4. ضریب شکست | 58 | |
4-2-5. گرانروی | 59 | |
4-2-6. عدد اسیدی | 60 | |
4-2-7. عدد پراکسید | 60 | |
4-2-8. عدد یدی | 62 | |
4-2-9. عدد صابونی | 63 | |
4-2-10. مواد صابونیناشونده | 64 | |
4-2-11. ترکیبات استرولی | 64 | |
4-2-12. توکوفرول | 65 | |
4-2-13. موم | 66 | |
4-2-14. شاخص پایداری اکسایشی | 66 | |
4-2-15. ترکیبات قطبی کل | 67 | |
4-3. قدرت مهار کنندگی رادیکال آزاد DPPH | 67 | |
4-4. ترکیبات فنلی | 71 | |
4-5. آزمون گرمخانه گذاری | 73 | |
4-5-1. عدد پراکسید | 73 | |
4-5-2. عدد اسید تیوباربیتوریک. | 77 | |
4-6. پارامترهای سینتیکی واکنش اکسایش روغن دانه خرفه | 80 | |
فصل پنجم- نتیجه گیری کلی و پیشنهادات | ||
5-1. نتیجه گیری کلی | 85 | |
5-2. پیشنهادات | 88 |
چکیده
با توجه به اثرات زیانآور آنتیاکسیدانهای سنتزی در بدن در سالهای اخیر توجه خاصی به کاربرد آنتیاکسیدانهای طبیعی در صنایعغذایی معطوف شده است. هدف از پژوهش حاضر، بررسی ویژگیهای فیزیکوشیمیایی، پارامترهای سینتیکی اکسایش روغن دانه خرفه پس از استخراج و همچنین تعیین قدرت آنتیاکسیدانی عصارههای متانولی-آبی و اتانولی-آبی آن بود. فعالیت آنتیاکسیدانی عصاره متانولی-آبی و اتانولی-آبی با بهره گرفتن از روش رادیکال آزاد DPPH (2، 2- دی فینیل پیکریل هیدرازیل) و آزمون گرمخانهگذاری تعیین شد. پارامترهای سینتیکی نیز با بهره گرفتن از دادههای به دست آمده از رنسیمت و معادله آرنیوس محاسبه گردید. بررسی ساختار نشان داد که روغن دانه خرفه منبع غنی از اسیدهای چرب امگا سه (77/26)، توکوفرول(5/798 میلیگرم درکیلوگرم) و ترکیبات فنلی(09/121 میلیگرم درکیلوگرم عصاره) است. در بررسی پارامترهای سینتیک اکسایش روغن خرفه میزان انرژی فعال سازی، آنتالپی و آنتروپی به ترتیب 46/93 کیلوژول بر مول، 54/90 کیلوژول بر مول و 62/18- (ژول بر مول درجه کلوین) به دست آمد. همچنین نتایج حاصل از فعالیت آنتیاکسیدانی نشان داد عصاره متانولی-آبی در غلظتهای بالا فعالیت آنتیاکسیدانی بیشتری نسبت به عصاره اتانولی-آبی داشت. نتایج آزمون گرمخانه گذاری نیز نشان داد که افزودن 100 پیپیام عصاره متانولی-آبی بذر خرفه به روغن سویا منجر بهکاهش عدد پراکسید و اسیدتیوباربیتوریک آن در مقایسه با نمونه شاهد طی 14 روز گرمخانهگذاری شد. بنابراین خرفه می تواند به عنوان منبعی غنی از امگاسه مورد استفاده قرار گیرد و یا به عنوان منبع آنتیاکسیدانهای طبیعی با قابلیت دسترسی آسان جهت بهبود مدت ماندگاری در صنعت غذا به کار برده شود.
کلمات کلیدی: انرژی فعال سازی؛ خصوصیات فیزیکوشیمیایی؛ سینتیک؛ فعالیت آنتیاکسیدانی
مقدمه
بخش مهمی از رژیم غذایی را روغنهای خوراکی تشکیل می دهند که به طور گسترده از گیاهان و دانه گیاهان بدست میآیند. روغنهای گیاهی دارای آثار مفیدی چون کاهش کلسترول خون میباشند و به صورتهای مختلفی از جمله روغنهای سالادی، پختوپز و سرخکردن به رژیم غذایی افراد راه پیدا کردهاند (مجهد و همکاران، 2011). با وجود تنوع زیاد منابع روغنهای گیاهی، صرفاً روغنهای سویا، نخل، کلزا و آفتابگردان به ترتیب 6/31، 5/30، 5/15 و 6/8 میلیون تن از مصرف جهانی را به خود اختصاص می دهند(استیونسون و همکاران، 2007). روشن است که منابع مزبور پاسخگوی تقاضای روزافزون روغنهای گیاهی برای مصارف خانگی و صنعتی نخواهند بود. از این رو نیاز به کشف و توسعه منابع جدید روغنهای خوراکی همواره احساس میگردد. روغنهای خوراکی مختلف حائز درجه سیرناشدگی و ساختار اسید چربی متفاوتی هستند و کیفیت و کمیت ترکیبات غیرتریگلیسریدی آنها با هم فرق دارد. تفاوتهای ساختاری به نوبه خود به ایجاد اختلاف در ویژگیهای فیزیکوشیمیایی و پایداری اکسایشی آنها منجر میگردد. بر خلاف روغنهای حیوانی که عمدتاً اشباع هستند و به راحتی با اکسیژن وارد واکنش نمیشوند، روغنهای گیاهی درجه سیرشدگی کمتری دارند و حساسیت بیشتری نسبت به واکنشهای اکسایشی از خود نشان می دهند (گوهری و همکاران، 1388). کشور ایران در زمینه روغنهای خوراکی به شدت به خارج از کشور وابسته است. بنا بر آمار منتشر شده در سال 1381، نزدیک به 90 درصد از روغن مورد نیاز کشور از خارج تأمین شده است. استفاده از منابع بومی بالطبع به کاهش وابستگی کشور در این زمینه منجر خواهد شد (توسلی و همکاران، 1389). اکسایش لیپیدها عاملی مهم در کاهش کیفیت غذاهای حاوی چربی طی فرایند و نگهداری میباشد. طعم تند، تغییر رنگ و تخریب ویتامینها و اسیدهای چرب چند غیراشباعی از جمله تغییراتی است که طی اکسایش رخ می دهند. صنعت غذا با بهره گرفتن از تکنیکهای مختلف همچون افزودن انواع آنتیاکسیدانهای سنتزی مانند هیدروکسی تولوئن بوتیله (BHT)[1]، هیدروکسی آنیزول بوتیله (BHA)[2] و ترسیوبوتیل هیدروکینون (TBHQ)[3] سعی در کاهش این تغییرات دارد، اگرچه این ترکیبات از لحاظ ایمنی هنوز مورد سوال هستند (ایگبال و بهانگر، 2007). با توجه به آگاهی مصرف کنندگان در مورد سلامت، امنیت و کیفیت فراوردههای غذایی و کشاورزی، تحقیق در مورد بهبود کاربرد آنتیاکسیدانهای طبیعی ضروری به نظر میرسد. بنابراین تلاش برای جایگزینی آنتیاکسیدانهای سنتزی با ترکیبات طبیعی از دانههای روغنی، ادویهها و دیگر ترکیبات گیاهی به شدت رو به افزایش است (ساسکیا و همکاران، 2001). گیاهان حاوی سطوح بالایی از ترکیبات فنلی هستند که اهمیت زیادی به عنوان آنتیاکسیدان دارند. از این رو بررسی در زمینه قابلیت استفاده از آنها در مواد غذایی رو به افزایش میباشد (پرومالا و هتیاراچچی، 2011). موثرترین مسیر در جهت کنترل واکنشها در مواد غذایی، شناخت مکانیسم انجام واکنش و عوامل موثر بر سرعت آن است. شناخت سینتیک واکنشها به عنوان مقدمه ای جهت ورود به بحث مدلسازی و جهت شناخت عوامل موثر بر فرایندها و پیش بینی تغییرات ناشی از فرایند استفاده میگردد (پورفلاح و همکاران، 1391). هدف از پژوهش حاضر بررسی خصوصیات فیزیکوشیمیایی، پارامترهای سینتیک اکسایش روغن حاصل از دانه خرفه[4] به عنوان یک روغن گیاهی جدید و همچنین اثر عصاره متانولی-آبی آن بر پایداری حرارتی و اکسایشی روغن سویا در مقایسه با آنتیاکسیدان سنتزی BHT میباشد.
. خرفه
خرفه دارای تاریخچه طولانی برای مصرف بشر، خوراک دام و مصرف داروئی میباشد (لیو و همکاران، 2000). خرفه یکی از اعضای خانواده پورتولاسه[1] میباشد که شامل بیش از 120 نوع گونه گیاهی آبدار و بوتهای است (رینالدی و همکاران، 2010). در متون مصری زمان فرعون نیز نام خرفه به عنوان یک گیاه داروئی ذکر شده بود (دخیل و همکاران، 2011). دو نوع گیاه خرفه وجود دارد: یک نوع از آن به صورت خودرو و با شاخههای منشعب رشد می کند و دیگری به صورت یک گیاه کشاورزی کشت میشود (صفدری و کاظمی تبار، 2009). خرفه در یونان، لبنان و دیگر کشورهای مدیترانهای به صورت سبزی در سوپ و سالاد مصرف میشده است (ازکو و همکاران، 1999). خرفه به عنوان هشتمین گیاه خوراکی رایج جهان معرفی شده است. این گیاه بومی هند و آسیای میانه است اما در آمریکا، اروپا، استرالیا و چین نیز رشد می کند(مورئو و همکاران، 2009). در ایران نیز خرفه تقریباً درتمام نقاط به خصوص نواحیگیلان، مازندران، تهران و اطراف آن پراکندگی دارد و در مناطق جنوبی ایران به عنوان سبزی خوردن کاشته میشود (میلادی گرجی و همکاران، 1385). سازمان بهداشت جهانی[2] خرفه را به عنوان یکی از پرمصرفترین گیاهان داروئی معرفی کرده است و اصطلاح اکسیر جهانی به آن نسبت داده شده است(دمیربان و همکاران، 2010).
2-1-1. گیاهشناسی
خرفه گیاهی سبز یکساله با ساقهی آبدار خوراکی، برگهایی متقابل و گلهایی کوچک به رنگ زرد میباشد. برگها فرم قاشقی دارند، دارای طول 1 تا 5 سانتیمتر و عرض 5/0 تا 2 سانتیمتر هستند در حالیکه ساقهها استوانهای شکل بوده و 30 سانتیمتر طول و 3 میلیمتر قطر دارند (الیویرا و همکاران، 2009؛ میلادی گرجی و همکاران، 1385). بذرها در غلافهای کوچک به وجود میآیند که رنگ آنها قهوهای متمایل به زرد است. نژادهای وحشی آن عموماً ساقههای گسترده بر سطح زمین داشته ولی نژاد پرورش یافته آن ساقهای ضخیم، گوشتدار، به وضع قائم و با ارتفاع 10 تا 30 سانتیمتر دارد. نژادهای وحشی آن در حاشیهی دریاچهها، اراضی شنزار و نواحی سایهدار یافت میشوند. با اینکه منشاء اصلی آن نواحی خاور نزدیک ذکر گردیده اما امروزه تقریباً در اکثر نواحی کرهی زمین مشاهده میگردند. خرفه در ایران در مناطق مختلفی از قبیل گرگان، لاهیجان، کردستان، اصفهان، لرستان، بلوچستان، اراک، قزوین، کاشان، بندر انزلی و بسیاری از نقاط دیگر ایران پرورش مییابد (صفدری و کاظمیتبار، 2009). این گیاه دارای رشد سریع و سازگاری بالاست و مقدار زیادی دانه تولید می کند (لیو و همکاران، 2000). بذرهای آن در فروردین تا اردیبهشت ماه جوانه زده و در تیر تا شهریورماه گل میدهد و از جمله گیاهانی است که در همان سال به طریق رویشی نیز زیاد شده و گسترش مییابد (پورطوسی و همکاران، 1387). خرفه تا حد زیادی به خاکهای شور مقاوم است و می تواند تولید قابل توجهی در شرایط تنش شوری داشته باشد (رحیمی و کافی، 1389).
2-1-2. ساختار شیمیایی خرفه
دانهی خرفه حاوی 4/17 درصد روغن و بتاسیتواسترول میباشد. خرفه به عنوان یک نوع غذا و گیاه داروئی به دلیل وجود مواد مغذی فراوان از جمله: پروتئین، کربوهیدرات، کلسیم، پتاسیم، روی و سدیم هزاران سال است که در چین مصرف میشود (کوتب و همکاران، 2011).